import os import time import statistics import pandas as pd import numpy as np from pandas_datareader import data dir_path = os.path.dirname(os.path.realpath(__file__)) start_date = '2014-01-01' end_date = '2018-01-01' SRC_DATA_FILENAME = 'goog_data.pkl' try: goog_data = pd.read_pickle(SRC_DATA_FILENAME) print('File data found...reading GOOG data') except FileNotFoundError: print('File not found...downloading the GOOG data') goog_data = data.DataReader('GOOG', 'yahoo', start_date, end_date) goog_data.to_pickle(SRC_DATA_FILENAME) goog_data_signal = pd.DataFrame(index=goog_data.index) goog_data_signal['price'] = goog_data['Adj Close'] close = goog_data_signal['price'] exe_start_time = time.time() import statistics as stats import math as math time_period = 20 history = [] # history of prices sma_values = [] # to tracking sma stddev_values = [] # history of computed stdev values for close_price in close: history.append(close_price) if len(history) > time_period: # track at most 20 prices del(history[0]) sma = stats.mean(history) sma_values.append(sma) variance = 0 for hist_price in history: variance = variance + ((hist_price - sma) ** 2) stdev = math.sqrt(variance / len(history)) stddev_values.append(stdev) goog_data = goog_data.assign(ClosePrice=pd.Series(close, index=goog_data.index)) goog_data = goog_data.assign(StandardDeviationOver20Days=pd.Series(stddev_values, index=goog_data.index)) """ Visualization """ import matplotlib.pyplot as plt fig = plt.figure() ax1 = fig.add_subplot(211, ylabel='Google price in $') goog_data['ClosePrice'].plot(ax=ax1, color='g', lw=2., legend=True) ax2 = fig.add_subplot(212, ylabel='Stddev in $') goog_data['StandardDeviationOver20Days'].plot(ax=ax2, color='b', lw=2., legend=True) plt.savefig(dir_path + '/stdev.png') plt.show()