import os import time import statistics import pandas as pd import numpy as np from pandas_datareader import data dir_path = os.path.dirname(os.path.realpath(__file__)) start_date = '2014-01-01' end_date = '2018-01-01' SRC_DATA_FILENAME = dir_path + '/goog_data.pkl' try: goog_data = pd.read_pickle(SRC_DATA_FILENAME) print('File data found...reading GOOG data') except FileNotFoundError: print('File not found...downloading the GOOG data') goog_data = data.DataReader('GOOG', 'yahoo', start_date, end_date) goog_data.to_pickle(SRC_DATA_FILENAME) goog_data_signal = pd.DataFrame(index=goog_data.index) goog_data_signal['price'] = goog_data['Adj Close'] close = goog_data_signal['price'] exe_start_time = time.time() import statistics as stats time_period = 20 # look back period to compute gains & losses gain_history = [] # history of gains over look back period (0 if no gain, magnitude of gain if gain) loss_history = [] # history of losses over look back period (0 if no loss, magnitude of loss if loss) avg_gain_values = [] # track avg gains for visualization purposes avg_loss_values = [] rsi_values = [] # track computed RSI values last_price = 0 # current_price - last_price > 0 => gain ; current_price - last_price < 0 => loss. for close_price in close: if last_price == 0: last_price = close_price gain_history.append(max(0, close_price - last_price)) loss_history.append(max(0, last_price - close_price)) last_price = close_price if len(gain_history) > time_period: del(gain_history[0]) del(loss_history[0]) avg_gain = stats.mean(gain_history) # average gain over lookback period avg_loss = stats.mean(loss_history) # average loss over lookback period avg_gain_values.append(avg_gain) avg_loss_values.append(avg_loss) rs = 0 if avg_loss > 0: # to avoid division by 0, which is undefined rs = avg_gain /avg_loss rsi = 100 - (100/(1+rs)) rsi_values.append(rsi) """ Data Visualization """ goog_data = goog_data.assign(ClosePrice=pd.Series(close,index=goog_data.index)) goog_data = goog_data.assign(RelativeStrengthAvgGainOver20Days=pd.Series(avg_gain_values, index=goog_data.index)) goog_data = goog_data.assign(RelativeStrengthAvgLossOver20Days=pd.Series(avg_loss_values, index=goog_data.index)) goog_data = goog_data.assign(RelativeStrengthIndicatorOver20Days=pd.Series(rsi_values, index=goog_data.index)) import matplotlib.pyplot as plt fig = plt.figure() ax1 = fig.add_subplot(311, ylabel='Google price in $') goog_data['ClosePrice'].plot(ax=ax1, color='black', lw=2., legend=True) ax2 = fig.add_subplot(312, ylabel='RS') goog_data['RelativeStrengthAvgGainOver20Days'].plot(ax=ax2, color='g', lw=2., legend=True) goog_data['RelativeStrengthAvgLossOver20Days'].plot(ax=ax2, color='r', lw=2., legend=True) ax3 = fig.add_subplot(313, ylabel='RSI') goog_data['RelativeStrengthIndicatorOver20Days'].plot(ax=ax3, color='b', lw=2., legend=True) plt.savefig(dir_path + '/rsi.png') plt.show()