import os import time import statistics from matplotlib.pyplot import legend, ylabel import pandas as pd import numpy as np from pandas_datareader import data dir_path = os.path.dirname(os.path.realpath(__file__)) start_date = '2014-01-01' end_date = '2018-01-01' SRC_DATA_FILENAME = dir_path + '/goog_data.pkl' try: goog_data = pd.read_pickle(SRC_DATA_FILENAME) print('File data found...reading GOOG data') except FileNotFoundError: print('File not found...downloading the GOOG data') goog_data = data.DataReader('GOOG', 'yahoo', start_date, end_date) goog_data.to_pickle(SRC_DATA_FILENAME) goog_data_signal = pd.DataFrame(index=goog_data.index) goog_data_signal['price'] = goog_data['Adj Close'] close = goog_data_signal['price'] exe_start_time = time.time() """ Calculate MACD """ num_periods_fast = 10 # fast EMA time period K_fast = 2/(num_periods_fast+1) ema_fast = 0 num_periods_slow = 40 # slow EMA time period K_slow = 2/(num_periods_slow+1) ema_slow = 0 num_periods_macd = 20 # MACD EMA time period K_macd = 2/(num_periods_macd+1) ema_macd=0 ema_fast_values = [] ema_slow_values = [] macd_values = [] macd_signal_values = [] macd_histogram_values = [] for close_price in close: if (ema_fast == 0): ema_fast = close_price ema_slow = close_price else: ema_fast = (close_price - ema_fast) * K_fast + ema_fast ema_slow = (close_price - ema_slow) * K_slow + ema_slow ema_fast_values.append(ema_fast) ema_slow_values.append(ema_slow) macd = ema_fast - ema_slow # calculate MACD # Based on APO(MACD), calculate EMA_MACD if ema_macd == 0: ema_macd = macd else: ema_macd = (macd - ema_macd) * K_slow + ema_macd macd_values.append(macd) macd_signal_values.append(ema_macd) macd_histogram_values.append(macd - ema_macd) """ Visualization """ # assign data back to goog_data to get index and aligned goog_data = goog_data.assign(ClosePrice=pd.Series(close, index=goog_data.index)) goog_data = goog_data.assign(Fast_EMA_110Days=pd.Series(ema_fast_values, index=goog_data.index)) goog_data = goog_data.assign(Slow_EMA_140Days=pd.Series(ema_slow_values, index=goog_data.index)) goog_data = goog_data.assign(MACD=pd.Series(macd_values, index=goog_data.index)) goog_data = goog_data.assign(EMA_of_MACD_120Days=pd.Series(macd_signal_values, index=goog_data.index)) goog_data = goog_data.assign(MACDHistogram=pd.Series(macd_histogram_values, index=goog_data.index)) print(goog_data['MACDHistogram']) import matplotlib.pyplot as plt fig = plt.figure() ax1 = fig.add_subplot(311, ylabel='Google price in $') goog_data['ClosePrice'].plot(ax=ax1, color='g', lw=2., legend=True) goog_data['Fast_EMA_110Days'].plot(ax=ax1, color='b', lw=2., legend=True) goog_data['Slow_EMA_140Days'].plot(ax=ax1, color='r', lw=2., legend=True) ax2 = fig.add_subplot(312, ylabel='MACD') goog_data['MACD'].plot(ax=ax2, color='black', lw=2., legend=True) goog_data['EMA_of_MACD_120Days'].plot(ax=ax2, color='g', lw=2., legend=True) ax3 = fig.add_subplot(313, ylabel='MACD') goog_data['MACDHistogram'].plot(ax=ax3, color='r', kind='bar', legend=True, use_index=False) plt.savefig(dir_path + "/macd.png") plt.show()