learn-algorithmic-trading/courses/sources/sec2/supportresistanceline_impro...

94 lines
3.4 KiB
Python
Raw Normal View History

import pandas as pd
import numpy as np
from pandas_datareader import data
start_date = '2014-01-01'
end_date = '2018-01-01'
SRC_DATA_FILENAME = 'goog_data.pkl'
try:
goog_data = pd.read_pickle(SRC_DATA_FILENAME)
print('File data found...reading GOOG data')
except FileNotFoundError:
print('File not found...downloading the GOOG data')
goog_data = data.DataReader('GOOG', 'yahoo', start_date, end_date)
goog_data.to_pickle(SRC_DATA_FILENAME)
goog_data_signal = pd.DataFrame(index=goog_data.index)
goog_data_signal['price'] = goog_data['Adj Close']
import numpy as np
def trading_support_resistance(data, bin_width=20):
data['sup_tolerance'] = pd.Series(np.zeros(len(data))) # tolerance of support line
data['res_tolerance'] = pd.Series(np.zeros(len(data))) # tolerance of resistance line
data['sup_count'] = pd.Series(np.zeros(len(data))) # number of hitting support line
data['res_count'] = pd.Series(np.zeros(len(data)))
data['sup'] = pd.Series(np.zeros(len(data))) # support line value (constant)
data['res'] = pd.Series(np.zeros(len(data)))
data['position'] = pd.Series(np.zeros(len(data)))
data['signal'] = pd.Series(np.zeros(len(data)))
in_support = 0
in_resistance = 0
for x in range((bin_width-1) + bin_width, len(data)):
data_section = data[x-bin_width : x+1] # get data within rolling window
support_level = min(data_section['price'])
resistance_level = max(data_section['price'])
range_level = resistance_level - support_level
data['res'][x] = resistance_level
data['sup'][x] = support_level
data['sup_tolerance'][x] = support_level + 0.2*range_level # 20% tolorance
data['res_tolerance'][x] = resistance_level - 0.2*range_level
if (data['price'][x] >= data['res_tolerance'][x]) and (data['price'][x] <= data['res'][x]):
# if price is within resistance tolerance region
in_resistance += 1
data['res_count'][x] = in_resistance
elif (data['price'][x] <= data['sup_tolerance'][x]) and (data['price'][x] >= data['sup'][x]):
# price is within support tolerance region
in_support += 1
data['sup_count'][x] = in_support
else:
# if not within any region, clear count
in_support = 0
in_resistance = 0
if in_resistance > 2:
# If enter resistance region twice
data['signal'][x] = 1
elif in_support > 2:
data['signal'][x] = 0
else:
data['signal'][x] = data['signal'][x-1]
data['position'] = data['signal'].diff()
trading_support_resistance(goog_data_signal)
print(goog_data_signal)
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(111, ylabel='Google price in $')
goog_data_signal['sup'].plot(ax=ax1, color='g', lw=2.)
goog_data_signal['res'].plot(ax=ax1, color='b', lw=2.)
goog_data_signal['price'].plot(ax=ax1, color='r', lw=2.)
ax1.plot(goog_data_signal.loc[goog_data_signal.position == 1.0].index,
goog_data_signal.price[goog_data_signal.position == 1.0], '^', markersize=7, color='k', label='buy')
ax1.plot(goog_data_signal.loc[goog_data_signal.position == -1.0].index,
goog_data_signal.price[goog_data_signal.position == -1.0], 'v', markersize=7, color='k', label='sell')
plt.legend()
plt.savefig("supportresistanceline_improved")
plt.show()