learn-algorithmic-trading/courses/sources/sec2/apo.py

76 lines
2.5 KiB
Python
Raw Normal View History

import os
import time
import statistics
from matplotlib.pyplot import legend, ylabel
import pandas as pd
import numpy as np
from pandas_datareader import data
dir_path = os.path.dirname(os.path.realpath(__file__))
start_date = '2014-01-01'
end_date = '2018-01-01'
SRC_DATA_FILENAME = dir_path+'/goog_data.pkl'
try:
goog_data = pd.read_pickle(SRC_DATA_FILENAME)
print('File data found...reading GOOG data')
except FileNotFoundError:
print('File not found...downloading the GOOG data')
goog_data = data.DataReader('GOOG', 'yahoo', start_date, end_date)
goog_data.to_pickle(SRC_DATA_FILENAME)
goog_data_signal = pd.DataFrame(index=goog_data.index)
goog_data_signal['price'] = goog_data['Adj Close']
close = goog_data_signal['price']
exe_start_time = time.time()
""" Calculate APO """
num_periods_fast = 10 # time period for the fast EMA
K_fast = 2/(num_periods_fast + 1)
ema_fast = 0
num_periods_slow = 40
K_slow = 2/(num_periods_slow + 1)
ema_slow = 0
ema_fast_values = [] # Hold fast EMA values for visualization purposes
ema_slow_values = [] # Hold slow EMA values for visualization purposes
apo_values = []
for close_price in close:
if (ema_fast == 0):
ema_fast = close_price
ema_slow = close_price
else:
ema_fast = (close_price - ema_fast) * K_fast + ema_fast
ema_slow = (close_price - ema_slow) * K_slow + ema_slow
ema_fast_values.append(ema_fast)
ema_slow_values.append(ema_slow)
apo_values.append(ema_fast - ema_slow)
""" Visualizing """
goog_data = goog_data.assign(ClosePrice=pd.Series(close, index=goog_data.index))
goog_data = goog_data.assign(FastExponential10DayMovingAverage=pd.Series(ema_fast_values, index=goog_data.index))
goog_data = goog_data.assign(SlowExponential140DayMovingAverage=pd.Series(ema_slow_values, index=goog_data.index))
goog_data = goog_data.assign(AbsolutePriceOscillator=pd.Series(apo_values, index=goog_data.index))
close_price = goog_data['ClosePrice']
ema_f = goog_data['FastExponential10DayMovingAverage']
ema_s = goog_data['SlowExponential140DayMovingAverage']
apo = goog_data['AbsolutePriceOscillator']
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(211, ylabel='Google price in $')
close_price.plot(ax=ax1, color='g', lw=2., legend=True)
ema_f.plot(ax=ax1, color='b', lw=2., legend=True)
ema_s.plot(ax=ax1, color='r', lw=2., legend=True)
ax2 = fig.add_subplot(212, ylabel='APO')
apo.plot(ax=ax2, color='black', lw=2., legend=True)
plt.savefig(dir_path + "/apo.png")
plt.show()