hid-keyboard-dongle-nRF/SDK/nRF5_SDK_17.0.2_d674dde/components/libraries/fds/fds.c

2198 lines
65 KiB
C
Raw Normal View History

2021-01-28 23:50:40 +11:00
/**
* Copyright (c) 2015 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(FDS)
#include "fds.h"
#include "fds_internal_defs.h"
#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#include "nrf_error.h"
#include "nrf_atomic.h"
#include "nrf_atfifo.h"
#include "nrf_fstorage.h"
#if (FDS_BACKEND == NRF_FSTORAGE_SD)
#include "nrf_fstorage_sd.h"
#elif (FDS_BACKEND == NRF_FSTORAGE_NVMC)
#include "nrf_fstorage_nvmc.h"
#else
#error Invalid FDS backend.
#endif
#if (FDS_CRC_CHECK_ON_READ)
#include "crc16.h"
#endif
static void fs_event_handler(nrf_fstorage_evt_t * evt);
NRF_FSTORAGE_DEF(nrf_fstorage_t m_fs) =
{
// The flash area boundaries are set in fds_init().
.evt_handler = fs_event_handler,
};
// Internal status flags.
static struct
{
bool volatile initialized;
nrf_atomic_flag_t initializing;
} m_flags;
// The number of queued operations.
// Incremented by queue_start() and decremented by queue_has_next().
static nrf_atomic_u32_t m_queued_op_cnt;
// The number of registered users and their callback functions.
static nrf_atomic_u32_t m_users;
static fds_cb_t m_cb_table[FDS_MAX_USERS];
// The latest (largest) record ID written so far.
static nrf_atomic_u32_t m_latest_rec_id;
// Queue of fds operations.
NRF_ATFIFO_DEF(m_queue, fds_op_t, FDS_OP_QUEUE_SIZE);
// Structures used to hold informations about virtual pages.
static fds_page_t m_pages[FDS_DATA_PAGES];
static fds_swap_page_t m_swap_page;
// Garbage collection data.
static fds_gc_data_t m_gc;
static void event_send(fds_evt_t const * const p_evt)
{
for (uint32_t user = 0; user < FDS_MAX_USERS; user++)
{
if (m_cb_table[user] != NULL)
{
m_cb_table[user](p_evt);
}
}
}
static void event_prepare(fds_op_t const * const p_op, fds_evt_t * const p_evt)
{
switch (p_op->op_code)
{
case FDS_OP_INIT:
p_evt->id = FDS_EVT_INIT;
break;
case FDS_OP_WRITE:
p_evt->id = FDS_EVT_WRITE;
p_evt->write.file_id = p_op->write.header.file_id;
p_evt->write.record_key = p_op->write.header.record_key;
p_evt->write.record_id = p_op->write.header.record_id;
p_evt->write.is_record_updated = 0;
break;
case FDS_OP_UPDATE:
p_evt->id = FDS_EVT_UPDATE;
p_evt->write.file_id = p_op->write.header.file_id;
p_evt->write.record_key = p_op->write.header.record_key;
p_evt->write.record_id = p_op->write.header.record_id;
p_evt->write.is_record_updated = (p_op->write.step == FDS_OP_WRITE_DONE);
break;
case FDS_OP_DEL_RECORD:
p_evt->id = FDS_EVT_DEL_RECORD;
p_evt->del.file_id = p_op->del.file_id;
p_evt->del.record_key = p_op->del.record_key;
p_evt->del.record_id = p_op->del.record_to_delete;
break;
case FDS_OP_DEL_FILE:
p_evt->id = FDS_EVT_DEL_FILE;
p_evt->del.file_id = p_op->del.file_id;
p_evt->del.record_key = FDS_RECORD_KEY_DIRTY;
p_evt->del.record_id = 0;
break;
case FDS_OP_GC:
p_evt->id = FDS_EVT_GC;
break;
default:
// Should not happen.
break;
}
}
static bool header_has_next(fds_header_t const * p_hdr, uint32_t const * p_page_end)
{
uint32_t const * const p_hdr32 = (uint32_t*)p_hdr;
return ( ( p_hdr32 < p_page_end)
&& (*p_hdr32 != FDS_ERASED_WORD)); // Check last to be on the safe side (dereference)
}
// Jump to the next header.
static fds_header_t const * header_jump(fds_header_t const * const p_hdr)
{
return (fds_header_t*)((uint32_t*)p_hdr + FDS_HEADER_SIZE + p_hdr->length_words);
}
static fds_header_status_t header_check(fds_header_t const * p_hdr, uint32_t const * p_page_end)
{
if (((uint32_t*)header_jump(p_hdr) > p_page_end))
{
// The length field would jump across the page boundary.
// FDS won't allow writing such a header, therefore it has been corrupted.
return FDS_HEADER_CORRUPT;
}
// It is important to also check for the record ID to be non-erased.
// It might happen that during GC, when records are copied in one operation,
// the device powers off after writing the first two words of the header.
// In that case the record would be considered valid, but its ID would
// corrupt the file system.
if ( (p_hdr->file_id == FDS_FILE_ID_INVALID)
|| (p_hdr->record_key == FDS_RECORD_KEY_DIRTY)
|| (p_hdr->record_id == FDS_ERASED_WORD))
{
return FDS_HEADER_DIRTY;
}
return FDS_HEADER_VALID;
}
static bool address_is_valid(uint32_t const * const p_addr)
{
return ((p_addr != NULL) &&
(p_addr >= (uint32_t*)m_fs.start_addr) &&
(p_addr <= (uint32_t*)m_fs.end_addr) &&
(is_word_aligned(p_addr)));
}
// Reads a page tag, and determines if the page is used to store data or as swap.
static fds_page_type_t page_identify(uint32_t const * const p_page_addr)
{
if ( (p_page_addr == NULL) // Should never happen.
|| (p_page_addr[FDS_PAGE_TAG_WORD_0] != FDS_PAGE_TAG_MAGIC))
{
return FDS_PAGE_UNDEFINED;
}
switch (p_page_addr[FDS_PAGE_TAG_WORD_1])
{
case FDS_PAGE_TAG_SWAP:
return FDS_PAGE_SWAP;
case FDS_PAGE_TAG_DATA:
return FDS_PAGE_DATA;
default:
return FDS_PAGE_UNDEFINED;
}
}
// A page can be tagged if it is entirely erased, or
// of the first word is fds magic word and the rest of it is erased.
static bool page_can_tag(uint32_t const * const p_page_addr)
{
// This function should consider pages that have only the first half
// of the fds page tag written as erased (taggable).
// That is because the tag is two words long, and if the device
// has rebooted after writing the first word, that would cause
// the page to be unusable (since undefined and not fully erased).
// By considering the first word as erased if it contains fds page tag,
// the page can be re-tagged as necessary.
if ((p_page_addr[FDS_PAGE_TAG_WORD_0] != FDS_ERASED_WORD) &&
(p_page_addr[FDS_PAGE_TAG_WORD_0] != FDS_PAGE_TAG_MAGIC))
{
return false;
}
// Ignore the first word of the tag, we already checked that it is either erased or fds's.
for (uint32_t i = FDS_PAGE_TAG_WORD_1; i < FDS_PAGE_SIZE; i++)
{
if (*(p_page_addr + i) != FDS_ERASED_WORD)
{
return false;
}
}
return true;
}
// NOTE: Must be called from within a critical section.
static bool page_has_space(uint16_t page, uint16_t length_words)
{
length_words += m_pages[page].write_offset;
length_words += m_pages[page].words_reserved;
return (length_words <= FDS_PAGE_SIZE);
}
// Given a pointer to a record, find the index of the page on which it is stored.
// Returns NRF_SUCCESS if the page is found, FDS_ERR_NOT_FOUND otherwise.
static ret_code_t page_from_record(uint16_t * const p_page, uint32_t const * const p_rec)
{
ret_code_t ret = FDS_ERR_NOT_FOUND;
CRITICAL_SECTION_ENTER();
for (uint16_t i = 0; i < FDS_DATA_PAGES; i++)
{
if ((p_rec > m_pages[i].p_addr) &&
(p_rec < m_pages[i].p_addr + FDS_PAGE_SIZE))
{
ret = NRF_SUCCESS;
*p_page = i;
break;
}
}
CRITICAL_SECTION_EXIT();
return ret;
}
// Scan a page to determine how many words have been written to it.
// This information is used to set the page write offset during initialization.
// Additionally, this function updates the latest record ID as it proceeds.
// If an invalid record header is found, the can_gc argument is set to true.
static void page_scan(uint32_t const * p_addr,
uint16_t * const words_written,
bool * const can_gc)
{
uint32_t const * const p_page_end = p_addr + FDS_PAGE_SIZE;
p_addr += FDS_PAGE_TAG_SIZE;
*words_written = FDS_PAGE_TAG_SIZE;
fds_header_t const * p_header = (fds_header_t*)p_addr;
while (header_has_next(p_header, p_page_end))
{
fds_header_status_t hdr = header_check(p_header, p_page_end);
if (hdr == FDS_HEADER_VALID)
{
// Update the latest (largest) record ID.
if (p_header->record_id > m_latest_rec_id)
{
m_latest_rec_id = p_header->record_id;
}
}
else
{
if (can_gc != NULL)
{
*can_gc = true;
}
if (hdr == FDS_HEADER_CORRUPT)
{
// It could happen that a record has a corrupt header which would set a
// wrong offset for this page. In such cases, update this value to its maximum,
// to ensure that no new records will be written to this page and to enable
// correct statistics reporting by fds_stat().
*words_written = FDS_PAGE_SIZE;
// We can't continue to scan this page.
return;
}
}
*words_written += (FDS_HEADER_SIZE + p_header->length_words);
p_header = header_jump(p_header);
}
}
static void page_offsets_update(fds_page_t * const p_page, fds_op_t const * p_op)
{
// If the first part of the header has been written correctly, update the offset as normal.
// Even if the record has not been written completely, fds is still able to continue normal
// operation. Incomplete records will be deleted the next time garbage collection is run.
// If we failed at the very beginning of the write operation, restore the offset
// to the previous value so that no holes will be left in the flash.
if (p_op->write.step > FDS_OP_WRITE_RECORD_ID)
{
p_page->write_offset += (FDS_HEADER_SIZE + p_op->write.header.length_words);
}
p_page->words_reserved -= (FDS_HEADER_SIZE + p_op->write.header.length_words);
}
// Tags a page as swap, i.e., reserved for GC.
static ret_code_t page_tag_write_swap(void)
{
// The tag needs to be statically allocated since it is not buffered by fstorage.
static uint32_t const page_tag_swap[] = {FDS_PAGE_TAG_MAGIC, FDS_PAGE_TAG_SWAP};
return nrf_fstorage_write(&m_fs, (uint32_t)m_swap_page.p_addr, page_tag_swap, FDS_PAGE_TAG_SIZE * sizeof(uint32_t), NULL);
}
// Tags a page as data, i.e, ready for storage.
static ret_code_t page_tag_write_data(uint32_t const * const p_page_addr)
{
// The tag needs to be statically allocated since it is not buffered by fstorage.
static uint32_t const page_tag_data[] = {FDS_PAGE_TAG_MAGIC, FDS_PAGE_TAG_DATA};
return nrf_fstorage_write(&m_fs, (uint32_t)p_page_addr, page_tag_data, FDS_PAGE_TAG_SIZE * sizeof(uint32_t), NULL);
}
// Reserve space on a page.
// NOTE: this function takes into the account the space required for the record header.
static ret_code_t write_space_reserve(uint16_t length_words, uint16_t * p_page)
{
bool space_reserved = false;
uint16_t const total_len_words = length_words + FDS_HEADER_SIZE;
if (total_len_words > FDS_PAGE_SIZE - FDS_PAGE_TAG_SIZE)
{
return FDS_ERR_RECORD_TOO_LARGE;
}
CRITICAL_SECTION_ENTER();
for (uint16_t page = 0; page < FDS_DATA_PAGES; page++)
{
if ((m_pages[page].page_type == FDS_PAGE_DATA) &&
(page_has_space(page, total_len_words)))
{
space_reserved = true;
*p_page = page;
m_pages[page].words_reserved += total_len_words;
break;
}
}
CRITICAL_SECTION_EXIT();
return (space_reserved) ? NRF_SUCCESS : FDS_ERR_NO_SPACE_IN_FLASH;
}
// Undo a write_space_reserve() call.
// NOTE: Must be called within a critical section.
static void write_space_free(uint16_t length_words, uint16_t page)
{
m_pages[page].words_reserved -= (length_words + FDS_HEADER_SIZE);
}
static uint32_t record_id_new(void)
{
return nrf_atomic_u32_add(&m_latest_rec_id, 1);
}
// Given a page and a record, find the next valid record on that page.
// If p_record is NULL, search from the beginning of the page,
// otherwise, resume searching from p_record.
// Return true if a record is found, false otherwise.
// If no record is found, p_record is unchanged.
static bool record_find_next(uint16_t page, uint32_t const ** p_record)
{
uint32_t const * p_page_end = (m_pages[page].p_addr + FDS_PAGE_SIZE);
// If this is the first call on this page, start searching from its beginning.
// Otherwise, jump to the next record.
fds_header_t const * p_header = (fds_header_t*)(*p_record);
if (p_header != NULL)
{
p_header = header_jump(p_header);
}
else
{
p_header = (fds_header_t*)(m_pages[page].p_addr + FDS_PAGE_TAG_SIZE);
}
// Read records from the page until:
// - a valid record is found or
// - the last record on a page is found
while (header_has_next(p_header, p_page_end))
{
switch (header_check(p_header, p_page_end))
{
case FDS_HEADER_VALID:
*p_record = (uint32_t*)p_header;
return true;
case FDS_HEADER_DIRTY:
p_header = header_jump(p_header);
break;
case FDS_HEADER_CORRUPT:
// We can't reliably jump over this record.
// There is nothing more we can do on this page.
return false;
}
}
// No more valid records on this page.
return false;
}
// Find a record given its descriptor and retrive the page in which the record is stored.
// NOTE: Do not pass NULL as an argument for p_page.
static bool record_find_by_desc(fds_record_desc_t * const p_desc, uint16_t * const p_page)
{
// If the gc_run_count field in the descriptor matches our counter, then the record has
// not been moved. If the address is valid, and the record ID matches, there is no need
// to find the record again. Only lookup the page in which the record is stored.
if ((address_is_valid(p_desc->p_record)) &&
(p_desc->gc_run_count == m_gc.run_count) &&
(p_desc->record_id == ((fds_header_t*)p_desc->p_record)->record_id))
{
return (page_from_record(p_page, p_desc->p_record) == NRF_SUCCESS);
}
// Otherwise, find the record in flash.
for (*p_page = 0; *p_page < FDS_DATA_PAGES; (*p_page)++)
{
// Set p_record to NULL to make record_find_next() search from the beginning of the page.
uint32_t const * p_record = NULL;
while (record_find_next(*p_page, &p_record))
{
fds_header_t const * const p_header = (fds_header_t*)p_record;
if (p_header->record_id == p_desc->record_id)
{
p_desc->p_record = p_record;
p_desc->gc_run_count = m_gc.run_count;
return true;
}
}
}
return false;
}
// Search for a record and return its descriptor.
// If p_file_id is NULL, only the record key will be used for matching.
// If p_record_key is NULL, only the file ID will be used for matching.
// If both are NULL, it will iterate through all records.
static ret_code_t record_find(uint16_t const * p_file_id,
uint16_t const * p_record_key,
fds_record_desc_t * p_desc,
fds_find_token_t * p_token)
{
if (!m_flags.initialized)
{
return FDS_ERR_NOT_INITIALIZED;
}
if (p_desc == NULL || p_token == NULL)
{
return FDS_ERR_NULL_ARG;
}
// Begin (or resume) searching for a record.
for (; p_token->page < FDS_DATA_PAGES; p_token->page++)
{
if (m_pages[p_token->page].page_type != FDS_PAGE_DATA)
{
// It might be that the page is FDS_PAGE_UNDEFINED.
// Skip this page.
continue;
}
while (record_find_next(p_token->page, &p_token->p_addr))
{
fds_header_t const * p_header = (fds_header_t*)p_token->p_addr;
// A valid record was found, check its header for a match.
if ((p_file_id != NULL) &&
(p_header->file_id != *p_file_id))
{
continue;
}
if ((p_record_key != NULL) &&
(p_header->record_key != *p_record_key))
{
continue;
}
// Record found; update the descriptor.
p_desc->record_id = p_header->record_id;
p_desc->p_record = p_token->p_addr;
p_desc->gc_run_count = m_gc.run_count;
return NRF_SUCCESS;
}
// We have scanned an entire page. Set the address in the token to NULL
// so that it will be updated in the next iteration.
p_token->p_addr = NULL;
}
return FDS_ERR_NOT_FOUND;
}
// Retrieve statistics about dirty records on a page.
static void records_stat(uint16_t page,
uint16_t * p_valid_records,
uint16_t * p_dirty_records,
uint16_t * p_freeable_words,
bool * p_corruption)
{
fds_header_t const * p_header = (fds_header_t*)(m_pages[page].p_addr + FDS_PAGE_TAG_SIZE);
uint32_t const * const p_page_end = (m_pages[page].p_addr + FDS_PAGE_SIZE);
while (header_has_next(p_header, p_page_end))
{
switch (header_check(p_header, p_page_end))
{
case FDS_HEADER_DIRTY:
*p_dirty_records += 1;
*p_freeable_words += FDS_HEADER_SIZE + p_header->length_words;
p_header = header_jump(p_header);
break;
case FDS_HEADER_VALID:
*p_valid_records += 1;
p_header = header_jump(p_header);
break;
case FDS_HEADER_CORRUPT:
{
*p_dirty_records += 1;
*p_freeable_words += (p_page_end - (uint32_t*)p_header);
*p_corruption = true;
// We can't continue on this page.
return;
}
default:
break;
}
}
}
// Get a buffer on the queue of operations.
static fds_op_t * queue_buf_get(nrf_atfifo_item_put_t * p_iput_ctx)
{
fds_op_t * const p_op = (fds_op_t*) nrf_atfifo_item_alloc(m_queue, p_iput_ctx);
memset(p_op, 0x00, sizeof(fds_op_t));
return p_op;
}
// Commit a buffer to the queue of operations.
static void queue_buf_store(nrf_atfifo_item_put_t * p_iput_ctx)
{
(void) nrf_atfifo_item_put(m_queue, p_iput_ctx);
}
// Load the next operation from the queue.
static fds_op_t * queue_load(nrf_atfifo_item_get_t * p_iget_ctx)
{
return (fds_op_t*) nrf_atfifo_item_get(m_queue, p_iget_ctx);
}
// Free the currently loaded operation.
static void queue_free(nrf_atfifo_item_get_t * p_iget_ctx)
{
// Free the current queue element.
(void) nrf_atfifo_item_free(m_queue, p_iget_ctx);
}
static bool queue_has_next(void)
{
// Decrement the number of queued operations.
ASSERT(m_queued_op_cnt != 0);
return nrf_atomic_u32_sub(&m_queued_op_cnt, 1);
}
// This function is called during initialization to setup the page structure (m_pages) and
// provide additional information regarding eventual further initialization steps.
static fds_init_opts_t pages_init(void)
{
uint32_t ret = NO_PAGES;
uint16_t page = 0;
uint16_t total_pages_available = FDS_VIRTUAL_PAGES;
bool swap_set_but_not_found = false;
for (uint16_t i = 0; i < FDS_VIRTUAL_PAGES; i++)
{
uint32_t const * const p_page_addr = (uint32_t*)m_fs.start_addr + (i * FDS_PAGE_SIZE);
fds_page_type_t const page_type = page_identify(p_page_addr);
switch (page_type)
{
case FDS_PAGE_UNDEFINED:
{
if (page_can_tag(p_page_addr))
{
if (m_swap_page.p_addr != NULL)
{
// If a swap page is already set, flag the page as erased (in m_pages)
// and try to tag it as data (in flash) later on during initialization.
m_pages[page].page_type = FDS_PAGE_ERASED;
m_pages[page].p_addr = p_page_addr;
m_pages[page].write_offset = FDS_PAGE_TAG_SIZE;
// This is a candidate for a potential new swap page, in case the
// current swap is going to be promoted to complete a GC instance.
m_gc.cur_page = page;
page++;
}
else
{
// If there is no swap page yet, use this one.
m_swap_page.p_addr = p_page_addr;
m_swap_page.write_offset = FDS_PAGE_TAG_SIZE;
swap_set_but_not_found = true;
}
ret |= PAGE_ERASED;
}
else
{
// The page contains non-FDS data.
// Do not initialize or use this page.
total_pages_available--;
m_pages[page].p_addr = p_page_addr;
m_pages[page].page_type = FDS_PAGE_UNDEFINED;
page++;
}
} break;
case FDS_PAGE_DATA:
{
m_pages[page].page_type = FDS_PAGE_DATA;
m_pages[page].p_addr = p_page_addr;
// Scan the page to compute its write offset and determine whether or not the page
// can be garbage collected. Additionally, update the latest kwown record ID.
page_scan(p_page_addr, &m_pages[page].write_offset, &m_pages[page].can_gc);
ret |= PAGE_DATA;
page++;
} break;
case FDS_PAGE_SWAP:
{
if (swap_set_but_not_found)
{
m_pages[page].page_type = FDS_PAGE_ERASED;
m_pages[page].p_addr = m_swap_page.p_addr;
m_pages[page].write_offset = FDS_PAGE_TAG_SIZE;
// This is a candidate for a potential new swap page, in case the
// current swap is going to be promoted to complete a GC instance.
m_gc.cur_page = page;
page++;
}
m_swap_page.p_addr = p_page_addr;
// If the swap is promoted, this offset should be kept, otherwise,
// it should be set to FDS_PAGE_TAG_SIZE.
page_scan(p_page_addr, &m_swap_page.write_offset, NULL);
ret |= (m_swap_page.write_offset == FDS_PAGE_TAG_SIZE) ?
PAGE_SWAP_CLEAN : PAGE_SWAP_DIRTY;
} break;
default:
// Shouldn't happen.
break;
}
}
if (total_pages_available < 2)
{
ret &= NO_PAGES;
}
return (fds_init_opts_t)ret;
}
// Write the first part of a record header (the key and length).
static ret_code_t record_header_write_begin(fds_op_t * const p_op, uint32_t * const p_addr)
{
ret_code_t ret;
// Write the record ID next.
p_op->write.step = FDS_OP_WRITE_RECORD_ID;
ret = nrf_fstorage_write(&m_fs, (uint32_t)(p_addr + FDS_OFFSET_TL),
&p_op->write.header.record_key, FDS_HEADER_SIZE_TL * sizeof(uint32_t), NULL);
return (ret == NRF_SUCCESS) ? NRF_SUCCESS : FDS_ERR_BUSY;
}
static ret_code_t record_header_write_id(fds_op_t * const p_op, uint32_t * const p_addr)
{
ret_code_t ret;
// If this record has no data, write the last part of the header directly.
// Otherwise, write the record data next.
p_op->write.step = (p_op->write.p_data != NULL) ?
FDS_OP_WRITE_DATA : FDS_OP_WRITE_HEADER_FINALIZE;
ret = nrf_fstorage_write(&m_fs, (uint32_t)(p_addr + FDS_OFFSET_ID),
&p_op->write.header.record_id, FDS_HEADER_SIZE_ID * sizeof(uint32_t), NULL);
return (ret == NRF_SUCCESS) ? NRF_SUCCESS : FDS_ERR_BUSY;
}
static ret_code_t record_header_write_finalize(fds_op_t * const p_op, uint32_t * const p_addr)
{
ret_code_t ret;
// If this is a simple write operation, then this is the last step.
// If this is an update instead, delete the old record next.
p_op->write.step = (p_op->op_code == FDS_OP_UPDATE) ?
FDS_OP_WRITE_FLAG_DIRTY : FDS_OP_WRITE_DONE;
ret = nrf_fstorage_write(&m_fs, (uint32_t)(p_addr + FDS_OFFSET_IC),
&p_op->write.header.file_id, FDS_HEADER_SIZE_IC * sizeof(uint32_t), NULL);
return (ret == NRF_SUCCESS) ? NRF_SUCCESS : FDS_ERR_BUSY;
}
static ret_code_t record_header_flag_dirty(uint32_t * const p_record, uint16_t page_to_gc)
{
// Used to flag a record as dirty, i.e. ready for garbage collection.
// Must be statically allocated since it will be written to flash.
__ALIGN(4) static uint32_t const dirty_header = {0xFFFF0000};
// Flag the record as dirty.
ret_code_t ret;
ret = nrf_fstorage_write(&m_fs, (uint32_t)p_record,
&dirty_header, FDS_HEADER_SIZE_TL * sizeof(uint32_t), NULL);
if (ret != NRF_SUCCESS)
{
return FDS_ERR_BUSY;
}
m_pages[page_to_gc].can_gc = true;
return NRF_SUCCESS;
}
static ret_code_t record_find_and_delete(fds_op_t * const p_op)
{
ret_code_t ret;
uint16_t page;
fds_record_desc_t desc = {0};
desc.record_id = p_op->del.record_to_delete;
if (record_find_by_desc(&desc, &page))
{
fds_header_t const * const p_header = (fds_header_t const *)desc.p_record;
// Copy the record key and file ID, so that they can be returned in the event.
// In case this function is run as part of an update, there is no need to copy
// the file ID and record key since they are present in the header stored
// in the queue element.
p_op->del.file_id = p_header->file_id;
p_op->del.record_key = p_header->record_key;
// Flag the record as dirty.
ret = record_header_flag_dirty((uint32_t*)desc.p_record, page);
}
else
{
// The record never existed, or it has already been deleted.
ret = FDS_ERR_NOT_FOUND;
}
return ret;
}
// Finds a record within a file and flags it as dirty.
static ret_code_t file_find_and_delete(fds_op_t * const p_op)
{
ret_code_t ret;
fds_record_desc_t desc;
// This token must persist across calls.
static fds_find_token_t tok = {0};
// Pass NULL to ignore the record key.
ret = record_find(&p_op->del.file_id, NULL, &desc, &tok);
if (ret == NRF_SUCCESS)
{
// A record was found: flag it as dirty.
ret = record_header_flag_dirty((uint32_t*)desc.p_record, tok.page);
}
else // FDS_ERR_NOT_FOUND
{
// No more records were found. Zero the token, so that it can be reused.
memset(&tok, 0x00, sizeof(fds_find_token_t));
}
return ret;
}
// Writes record data to flash.
static ret_code_t record_write_data(fds_op_t * const p_op, uint32_t * const p_addr)
{
ret_code_t ret;
p_op->write.step = FDS_OP_WRITE_HEADER_FINALIZE;
ret = nrf_fstorage_write(&m_fs, (uint32_t)(p_addr + FDS_OFFSET_DATA),
p_op->write.p_data, p_op->write.header.length_words * sizeof(uint32_t), NULL);
return (ret == NRF_SUCCESS) ? NRF_SUCCESS : FDS_ERR_BUSY;
}
#if (FDS_CRC_CHECK_ON_READ)
static bool crc_verify_success(uint16_t crc, uint16_t len_words, uint32_t const * const p_data)
{
uint16_t computed_crc;
// The CRC is computed on the entire record, except the CRC field itself.
// The record header is 12 bytes, out of these we have to skip bytes 6 to 8 where the
// CRC itself is stored. Then we compute the CRC for the rest of the record, from byte 8 of
// the header (where the record ID begins) to the end of the record data.
computed_crc = crc16_compute((uint8_t const *)p_data, 6, NULL);
computed_crc = crc16_compute((uint8_t const *)p_data + 8,
(FDS_HEADER_SIZE_ID + len_words) * sizeof(uint32_t),
&computed_crc);
return (computed_crc == crc);
}
#endif
static void gc_init(void)
{
m_gc.run_count++;
m_gc.cur_page = 0;
m_gc.resume = false;
// Setup which pages to GC. Defer checking for open records and the can_gc flag,
// as other operations might change those while GC is running.
for (uint16_t i = 0; i < FDS_DATA_PAGES; i++)
{
m_gc.do_gc_page[i] = (m_pages[i].page_type == FDS_PAGE_DATA);
}
}
// Obtain the next page to be garbage collected.
// Returns true if there are pages left to garbage collect, returns false otherwise.
static bool gc_page_next(uint16_t * const p_next_page)
{
bool ret = false;
for (uint16_t i = 0; i < FDS_DATA_PAGES; i++)
{
if (m_gc.do_gc_page[i])
{
// Do not attempt to GC this page again.
m_gc.do_gc_page[i] = false;
// Only GC pages with no open records and with some records which have been deleted.
if ((m_pages[i].records_open == 0) && (m_pages[i].can_gc == true))
{
*p_next_page = i;
ret = true;
break;
}
}
}
return ret;
}
static ret_code_t gc_swap_erase(void)
{
m_gc.state = GC_DISCARD_SWAP;
m_swap_page.write_offset = FDS_PAGE_TAG_SIZE;
return nrf_fstorage_erase(&m_fs, (uint32_t)m_swap_page.p_addr, FDS_PHY_PAGES_IN_VPAGE, NULL);
}
// Erase the page being garbage collected, or erase the swap in case there are any open
// records on the page being garbage collected.
static ret_code_t gc_page_erase(void)
{
uint32_t ret;
uint16_t const gc = m_gc.cur_page;
if (m_pages[gc].records_open == 0)
{
m_gc.state = GC_ERASE_PAGE;
ret = nrf_fstorage_erase(&m_fs, (uint32_t)m_pages[gc].p_addr, FDS_PHY_PAGES_IN_VPAGE, NULL);
}
else
{
// If there are open records, stop garbage collection on this page.
// Discard the swap and try to garbage collect another page.
ret = gc_swap_erase();
}
return ret;
}
// Copy the current record to swap.
static ret_code_t gc_record_copy(void)
{
fds_header_t const * const p_header = (fds_header_t*)m_gc.p_record_src;
uint32_t const * const p_dest = m_swap_page.p_addr + m_swap_page.write_offset;
uint16_t const record_len = FDS_HEADER_SIZE + p_header->length_words;
m_gc.state = GC_COPY_RECORD;
// Copy the record to swap; it is guaranteed to fit in the destination page,
// so there is no need to check its size. This will either succeed or timeout.
return nrf_fstorage_write(&m_fs, (uint32_t)p_dest, m_gc.p_record_src,
record_len * sizeof(uint32_t),
NULL);
}
static ret_code_t gc_record_find_next(void)
{
ret_code_t ret;
// Find the next valid record to copy.
if (record_find_next(m_gc.cur_page, &m_gc.p_record_src))
{
ret = gc_record_copy();
}
else
{
// No more records left to copy on this page; swap pages.
ret = gc_page_erase();
}
return ret;
}
// Promote the swap by tagging it as a data page.
static ret_code_t gc_swap_promote(void)
{
m_gc.state = GC_PROMOTE_SWAP;
return page_tag_write_data(m_pages[m_gc.cur_page].p_addr);
}
// Tag the page just garbage collected as swap.
static ret_code_t gc_tag_new_swap(void)
{
m_gc.state = GC_TAG_NEW_SWAP;
m_gc.p_record_src = NULL;
return page_tag_write_swap();
}
static ret_code_t gc_next_page(void)
{
if (!gc_page_next(&m_gc.cur_page))
{
// No pages left to GC; GC has terminated. Reset the state.
m_gc.state = GC_BEGIN;
m_gc.cur_page = 0;
m_gc.p_record_src = NULL;
return FDS_OP_COMPLETED;
}
return gc_record_find_next();
}
// Update the swap page offeset after a record has been successfully copied to it.
static void gc_update_swap_offset(void)
{
fds_header_t const * const p_header = (fds_header_t*)m_gc.p_record_src;
uint16_t const record_len = FDS_HEADER_SIZE + p_header->length_words;
m_swap_page.write_offset += record_len;
}
static void gc_swap_pages(void)
{
// The page being garbage collected will be the new swap page,
// and the current swap will be used as a data page (promoted).
uint32_t const * const p_addr = m_swap_page.p_addr;
m_swap_page.p_addr = m_pages[m_gc.cur_page].p_addr;
m_pages[m_gc.cur_page].p_addr = p_addr;
// Keep the offset for this page, but reset it for the swap.
m_pages[m_gc.cur_page].write_offset = m_swap_page.write_offset;
m_swap_page.write_offset = FDS_PAGE_TAG_SIZE;
// Page has been garbage collected
m_pages[m_gc.cur_page].can_gc = false;
}
static void gc_state_advance(void)
{
switch (m_gc.state)
{
case GC_BEGIN:
gc_init();
m_gc.state = GC_NEXT_PAGE;
break;
// A record was successfully copied.
case GC_COPY_RECORD:
gc_update_swap_offset();
m_gc.state = GC_FIND_NEXT_RECORD;
break;
// A page was successfully erased. Prepare to promote the swap.
case GC_ERASE_PAGE:
gc_swap_pages();
m_gc.state = GC_PROMOTE_SWAP;
break;
// Swap was discarded because the page being GC'ed had open records.
case GC_DISCARD_SWAP:
// Swap was successfully promoted.
case GC_PROMOTE_SWAP:
// Prepare to tag the page just GC'ed as swap.
m_gc.state = GC_TAG_NEW_SWAP;
break;
case GC_TAG_NEW_SWAP:
m_gc.state = GC_NEXT_PAGE;
break;
default:
// Should not happen.
break;
}
}
// Initialize the filesystem.
static ret_code_t init_execute(uint32_t prev_ret, fds_op_t * const p_op)
{
ret_code_t ret = FDS_ERR_INTERNAL;
if (prev_ret != NRF_SUCCESS)
{
// A previous operation has timed out.
m_flags.initializing = false;
return FDS_ERR_OPERATION_TIMEOUT;
}
switch (p_op->init.step)
{
case FDS_OP_INIT_TAG_SWAP:
{
// The page write offset was determined previously by pages_init().
p_op->init.step = FDS_OP_INIT_TAG_DATA;
ret = page_tag_write_swap();
} break;
case FDS_OP_INIT_TAG_DATA:
{
// Tag remaining erased pages as data.
bool write_reqd = false;
for (uint16_t i = 0; i < FDS_DATA_PAGES; i++)
{
if (m_pages[i].page_type == FDS_PAGE_ERASED)
{
m_pages[i].page_type = FDS_PAGE_DATA;
write_reqd = true;
ret = page_tag_write_data(m_pages[i].p_addr);
break;
}
}
if (!write_reqd)
{
m_flags.initialized = true;
m_flags.initializing = false;
return FDS_OP_COMPLETED;
}
} break;
case FDS_OP_INIT_ERASE_SWAP:
{
// If the swap is going to be discarded then reset its write_offset.
p_op->init.step = FDS_OP_INIT_TAG_SWAP;
m_swap_page.write_offset = FDS_PAGE_TAG_SIZE;
ret = nrf_fstorage_erase(&m_fs, (uint32_t)m_swap_page.p_addr, FDS_PHY_PAGES_IN_VPAGE, NULL);
} break;
case FDS_OP_INIT_PROMOTE_SWAP:
{
p_op->init.step = FDS_OP_INIT_TAG_SWAP;
// When promoting the swap, keep the write_offset set by pages_init().
ret = page_tag_write_data(m_swap_page.p_addr);
uint16_t const gc = m_gc.cur_page;
uint32_t const * const p_old_swap = m_swap_page.p_addr;
// Execute the swap.
m_swap_page.p_addr = m_pages[gc].p_addr;
m_pages[gc].p_addr = p_old_swap;
// Copy the offset from the swap to the new page.
m_pages[gc].write_offset = m_swap_page.write_offset;
m_swap_page.write_offset = FDS_PAGE_TAG_SIZE;
m_pages[gc].page_type = FDS_PAGE_DATA;
} break;
default:
// Should not happen.
break;
}
if (ret != NRF_SUCCESS)
{
// fstorage queue was full.
m_flags.initializing = false;
return FDS_ERR_BUSY;
}
return FDS_OP_EXECUTING;
}
// Executes write and update operations.
static ret_code_t write_execute(uint32_t prev_ret, fds_op_t * const p_op)
{
ret_code_t ret;
uint32_t * p_write_addr;
fds_page_t * const p_page = &m_pages[p_op->write.page];
// This must persist across calls.
static fds_record_desc_t desc = {0};
// When a record is updated, this variable will hold the page where the old
// copy was stored. This will be used to set the can_gc flag when the header is
// invalidated (FDS_OP_WRITE_FLAG_DIRTY).
static uint16_t page;
if (prev_ret != NRF_SUCCESS)
{
// The previous operation has timed out, update offsets.
page_offsets_update(p_page, p_op);
return FDS_ERR_OPERATION_TIMEOUT;
}
// Compute the address where to write data.
p_write_addr = (uint32_t*)(p_page->p_addr + p_page->write_offset);
// Execute the current step of the operation, and set one to be executed next.
switch (p_op->write.step)
{
case FDS_OP_WRITE_FIND_RECORD:
{
// The first step of updating a record constists of locating the copy to be deleted.
// If the old copy couldn't be found for any reason then the update should fail.
// This prevents duplicates when queuing multiple updates of the same record.
desc.p_record = NULL;
desc.record_id = p_op->write.record_to_delete;
if (!record_find_by_desc(&desc, &page))
{
return FDS_ERR_NOT_FOUND;
}
// Setting the step is redundant since we are falling through.
}
// Fallthrough to FDS_OP_WRITE_HEADER_BEGIN.
case FDS_OP_WRITE_HEADER_BEGIN:
ret = record_header_write_begin(p_op, p_write_addr);
break;
case FDS_OP_WRITE_RECORD_ID:
ret = record_header_write_id(p_op, p_write_addr);
break;
case FDS_OP_WRITE_DATA:
ret = record_write_data(p_op, p_write_addr);
break;
case FDS_OP_WRITE_HEADER_FINALIZE:
ret = record_header_write_finalize(p_op, p_write_addr);
break;
case FDS_OP_WRITE_FLAG_DIRTY:
p_op->write.step = FDS_OP_WRITE_DONE;
ret = record_header_flag_dirty((uint32_t*)desc.p_record, page);
break;
case FDS_OP_WRITE_DONE:
ret = FDS_OP_COMPLETED;
#if (FDS_CRC_CHECK_ON_WRITE)
if (!crc_verify_success(p_op->write.header.crc16,
p_op->write.header.length_words,
p_write_addr))
{
ret = FDS_ERR_CRC_CHECK_FAILED;
}
#endif
break;
default:
ret = FDS_ERR_INTERNAL;
break;
}
// An operation has either completed or failed. It may have failed because fstorage
// ran out of memory, or because the user tried to delete a record which did not exist.
if (ret != FDS_OP_EXECUTING)
{
// There won't be another callback for this operation, so update the page offset now.
page_offsets_update(p_page, p_op);
}
return ret;
}
static ret_code_t delete_execute(uint32_t prev_ret, fds_op_t * const p_op)
{
ret_code_t ret;
if (prev_ret != NRF_SUCCESS)
{
return FDS_ERR_OPERATION_TIMEOUT;
}
switch (p_op->del.step)
{
case FDS_OP_DEL_RECORD_FLAG_DIRTY:
p_op->del.step = FDS_OP_DEL_DONE;
ret = record_find_and_delete(p_op);
break;
case FDS_OP_DEL_FILE_FLAG_DIRTY:
ret = file_find_and_delete(p_op);
if (ret == FDS_ERR_NOT_FOUND)
{
// No more records could be found.
// There won't be another callback for this operation, so return now.
ret = FDS_OP_COMPLETED;
}
break;
case FDS_OP_DEL_DONE:
ret = FDS_OP_COMPLETED;
break;
default:
ret = FDS_ERR_INTERNAL;
break;
}
return ret;
}
static ret_code_t gc_execute(uint32_t prev_ret)
{
ret_code_t ret;
if (prev_ret != NRF_SUCCESS)
{
return FDS_ERR_OPERATION_TIMEOUT;
}
if (m_gc.resume)
{
m_gc.resume = false;
}
else
{
gc_state_advance();
}
switch (m_gc.state)
{
case GC_NEXT_PAGE:
ret = gc_next_page();
break;
case GC_FIND_NEXT_RECORD:
ret = gc_record_find_next();
break;
case GC_COPY_RECORD:
ret = gc_record_copy();
break;
case GC_ERASE_PAGE:
ret = gc_page_erase();
break;
case GC_PROMOTE_SWAP:
ret = gc_swap_promote();
break;
case GC_TAG_NEW_SWAP:
ret = gc_tag_new_swap();
break;
default:
// Should not happen.
ret = FDS_ERR_INTERNAL;
break;
}
// Either FDS_OP_EXECUTING, FDS_OP_COMPLETED, FDS_ERR_BUSY or FDS_ERR_INTERNAL.
return ret;
}
static void queue_process(ret_code_t result)
{
static fds_op_t * m_p_cur_op; // Current fds operation.
static nrf_atfifo_item_get_t m_iget_ctx; // Queue context for the current operation.
while (true)
{
if (m_p_cur_op == NULL)
{
// Load the next from the queue if no operation is being executed.
m_p_cur_op = queue_load(&m_iget_ctx);
}
/* We can reach here in three ways:
* from queue_start(): something was just queued
* from the fstorage event handler: an operation is being executed
* looping: we only loop if there are operations still in the queue
*
* In all these three cases, m_p_cur_op != NULL.
*/
ASSERT(m_p_cur_op != NULL);
switch (m_p_cur_op->op_code)
{
case FDS_OP_INIT:
result = init_execute(result, m_p_cur_op);
break;
case FDS_OP_WRITE:
case FDS_OP_UPDATE:
result = write_execute(result, m_p_cur_op);
break;
case FDS_OP_DEL_RECORD:
case FDS_OP_DEL_FILE:
result = delete_execute(result, m_p_cur_op);
break;
case FDS_OP_GC:
result = gc_execute(result);
break;
default:
result = FDS_ERR_INTERNAL;
break;
}
if (result == FDS_OP_EXECUTING)
{
// The operation has not completed yet. Wait for the next system event.
break;
}
// The operation has completed (either successfully or with an error).
// - send an event to the user
// - free the operation buffer
// - execute any other queued operations
fds_evt_t evt =
{
// The operation might have failed for one of the following reasons:
// FDS_ERR_BUSY - flash subsystem can't accept the operation
// FDS_ERR_OPERATION_TIMEOUT - flash subsystem timed out
// FDS_ERR_CRC_CHECK_FAILED - a CRC check failed
// FDS_ERR_NOT_FOUND - no record found (delete/update)
.result = (result == FDS_OP_COMPLETED) ? NRF_SUCCESS : result,
};
event_prepare(m_p_cur_op, &evt);
event_send(&evt);
// Zero the pointer to the current operation so that this function
// will fetch a new one from the queue next time it is run.
m_p_cur_op = NULL;
// The result of the operation must be reset upon re-entering the loop to ensure
// the next operation won't be affected by eventual errors in previous operations.
result = NRF_SUCCESS;
// Free the queue element used by the current operation.
queue_free(&m_iget_ctx);
if (!queue_has_next())
{
// No more elements left. Nothing to do.
break;
}
}
}
static void queue_start(void)
{
if (!nrf_atomic_u32_fetch_add(&m_queued_op_cnt, 1))
{
queue_process(NRF_SUCCESS);
}
}
static void fs_event_handler(nrf_fstorage_evt_t * p_evt)
{
queue_process(p_evt->result);
}
// Enqueues write and update operations.
static ret_code_t write_enqueue(fds_record_desc_t * const p_desc,
fds_record_t const * const p_record,
fds_reserve_token_t const * const p_tok,
fds_op_code_t op_code)
{
ret_code_t ret;
uint16_t page;
uint16_t crc = 0;
uint16_t length_words = 0;
fds_op_t * p_op;
nrf_atfifo_item_put_t iput_ctx;
if (!m_flags.initialized)
{
return FDS_ERR_NOT_INITIALIZED;
}
if (p_record == NULL)
{
return FDS_ERR_NULL_ARG;
}
if ((p_record->file_id == FDS_FILE_ID_INVALID) ||
(p_record->key == FDS_RECORD_KEY_DIRTY))
{
return FDS_ERR_INVALID_ARG;
}
if (!is_word_aligned(p_record->data.p_data))
{
return FDS_ERR_UNALIGNED_ADDR;
}
// No space was previously reserved in flash for this operation.
if (p_tok == NULL)
{
// Find a page where to write data.
length_words = p_record->data.length_words;
ret = write_space_reserve(length_words, &page);
if (ret != NRF_SUCCESS)
{
// There is either not enough space in flash (FDS_ERR_NO_SPACE_IN_FLASH) or
// the record exceeds the size of virtual page (FDS_ERR_RECORD_TOO_LARGE).
return ret;
}
}
else
{
page = p_tok->page;
length_words = p_tok->length_words;
}
// Get a buffer on the queue of operations.
p_op = queue_buf_get(&iput_ctx);
if (p_op == NULL)
{
CRITICAL_SECTION_ENTER();
write_space_free(length_words, page);
CRITICAL_SECTION_EXIT();
return FDS_ERR_NO_SPACE_IN_QUEUES;
}
// Initialize the operation.
p_op->op_code = op_code;
p_op->write.step = FDS_OP_WRITE_HEADER_BEGIN;
p_op->write.page = page;
p_op->write.p_data = p_record->data.p_data;
p_op->write.header.record_id = record_id_new();
p_op->write.header.file_id = p_record->file_id;
p_op->write.header.record_key = p_record->key;
p_op->write.header.length_words = length_words;
if (op_code == FDS_OP_UPDATE)
{
p_op->write.step = FDS_OP_WRITE_FIND_RECORD;
// Save the record ID of the record to be updated.
p_op->write.record_to_delete = p_desc->record_id;
}
#if (FDS_CRC_CHECK_ON_READ)
// First, compute the CRC for the first 6 bytes of the header which contain the
// record key, length and file ID, then, compute the CRC of the record ID (4 bytes).
crc = crc16_compute((uint8_t*)&p_op->write.header, 6, NULL);
crc = crc16_compute((uint8_t*)&p_op->write.header.record_id, 4, &crc);
// Compute the CRC for the record data.
crc = crc16_compute((uint8_t*)p_record->data.p_data,
p_record->data.length_words * sizeof(uint32_t), &crc);
#endif
p_op->write.header.crc16 = crc;
queue_buf_store(&iput_ctx);
// Initialize the record descriptor, if provided.
if (p_desc != NULL)
{
p_desc->p_record = NULL;
// Don't invoke record_id_new() again !
p_desc->record_id = p_op->write.header.record_id;
p_desc->record_is_open = false;
p_desc->gc_run_count = m_gc.run_count;
}
// Start processing the queue, if necessary.
queue_start();
return NRF_SUCCESS;
}
ret_code_t fds_register(fds_cb_t cb)
{
ret_code_t ret;
if (m_users == FDS_MAX_USERS)
{
ret = FDS_ERR_USER_LIMIT_REACHED;
}
else
{
m_cb_table[m_users] = cb;
(void) nrf_atomic_u32_add(&m_users, 1);
ret = NRF_SUCCESS;
}
return ret;
}
static uint32_t flash_end_addr(void)
{
uint32_t const bootloader_addr = BOOTLOADER_ADDRESS;
uint32_t const page_sz = NRF_FICR->CODEPAGESIZE;
#if defined(NRF52810_XXAA) || defined(NRF52811_XXAA)
// Hardcode the number of flash pages, necessary for SoC emulation.
// nRF52810 on nRF52832 and
// nRF52811 on nRF52840
uint32_t const code_sz = 48;
#else
uint32_t const code_sz = NRF_FICR->CODESIZE;
#endif
uint32_t end_addr = (bootloader_addr != 0xFFFFFFFF) ? bootloader_addr : (code_sz * page_sz);
return end_addr - (FDS_PHY_PAGES_RESERVED * FDS_PHY_PAGE_SIZE * sizeof(uint32_t));
}
static void flash_bounds_set(void)
{
uint32_t flash_size = (FDS_PHY_PAGES * FDS_PHY_PAGE_SIZE * sizeof(uint32_t));
m_fs.end_addr = flash_end_addr();
m_fs.start_addr = m_fs.end_addr - flash_size;
}
static ret_code_t flash_subsystem_init(void)
{
flash_bounds_set();
#if (FDS_BACKEND == NRF_FSTORAGE_SD)
return nrf_fstorage_init(&m_fs, &nrf_fstorage_sd, NULL);
#elif (FDS_BACKEND == NRF_FSTORAGE_NVMC)
return nrf_fstorage_init(&m_fs, &nrf_fstorage_nvmc, NULL);
#else
#error Invalid FDS_BACKEND.
#endif
}
static void queue_init(void)
{
(void) NRF_ATFIFO_INIT(m_queue);
}
ret_code_t fds_init(void)
{
ret_code_t ret;
fds_evt_t const evt_success =
{
.id = FDS_EVT_INIT,
.result = NRF_SUCCESS,
};
if (m_flags.initialized)
{
// No initialization is necessary. Notify the application immediately.
event_send(&evt_success);
return NRF_SUCCESS;
}
if (nrf_atomic_flag_set_fetch(&m_flags.initializing))
{
// If we were already initializing, return.
return NRF_SUCCESS;
}
// Otherwise, the flag is set and we proceed to initialization.
ret = flash_subsystem_init();
if (ret != NRF_SUCCESS)
{
return ret;
}
queue_init();
// Initialize the page structure (m_pages), and determine which
// initialization steps are required given the current state of the filesystem.
fds_init_opts_t init_opts = pages_init();
switch (init_opts)
{
case NO_PAGES:
case NO_SWAP:
return FDS_ERR_NO_PAGES;
case ALREADY_INSTALLED:
{
// No initialization is necessary. Notify the application immediately.
m_flags.initialized = true;
m_flags.initializing = false;
event_send(&evt_success);
return NRF_SUCCESS;
}
default:
break;
}
// A write operation is necessary to initialize the fileystem.
nrf_atfifo_item_put_t iput_ctx;
fds_op_t * p_op = queue_buf_get(&iput_ctx);
if (p_op == NULL)
{
return FDS_ERR_NO_SPACE_IN_QUEUES;
}
p_op->op_code = FDS_OP_INIT;
switch (init_opts)
{
case FRESH_INSTALL:
case TAG_SWAP:
p_op->init.step = FDS_OP_INIT_TAG_SWAP;
break;
case PROMOTE_SWAP:
case PROMOTE_SWAP_INST:
p_op->init.step = FDS_OP_INIT_PROMOTE_SWAP;
break;
case DISCARD_SWAP:
p_op->init.step = FDS_OP_INIT_ERASE_SWAP;
break;
case TAG_DATA:
case TAG_DATA_INST:
p_op->init.step = FDS_OP_INIT_TAG_DATA;
break;
default:
// Should not happen.
break;
}
queue_buf_store(&iput_ctx);
queue_start();
return NRF_SUCCESS;
}
ret_code_t fds_record_open(fds_record_desc_t * const p_desc,
fds_flash_record_t * const p_flash_rec)
{
uint16_t page;
if ((p_desc == NULL) || (p_flash_rec == NULL))
{
return FDS_ERR_NULL_ARG;
}
// Find the record if necessary.
if (record_find_by_desc(p_desc, &page))
{
fds_header_t const * const p_header = (fds_header_t*)p_desc->p_record;
#if (FDS_CRC_CHECK_ON_READ)
if (!crc_verify_success(p_header->crc16,
p_header->length_words,
p_desc->p_record))
{
return FDS_ERR_CRC_CHECK_FAILED;
}
#endif
(void) nrf_atomic_u32_add(&m_pages[page].records_open, 1);
// Initialize p_flash_rec.
p_flash_rec->p_header = p_header;
p_flash_rec->p_data = (p_desc->p_record + FDS_HEADER_SIZE);
// Set the record as open in the descriptor.
p_desc->record_is_open = true;
return NRF_SUCCESS;
}
// The record could not be found.
// It either never existed or it has been deleted.
return FDS_ERR_NOT_FOUND;
}
ret_code_t fds_record_close(fds_record_desc_t * const p_desc)
{
ret_code_t ret;
uint16_t page;
if (p_desc == NULL)
{
return FDS_ERR_NULL_ARG;
}
if (record_find_by_desc((fds_record_desc_t*)p_desc, &page))
{
CRITICAL_SECTION_ENTER();
if ((m_pages[page].records_open > 0) && (p_desc->record_is_open))
{
m_pages[page].records_open--;
p_desc->record_is_open = false;
ret = NRF_SUCCESS;
}
else
{
ret = FDS_ERR_NO_OPEN_RECORDS;
}
CRITICAL_SECTION_EXIT();
}
else
{
ret = FDS_ERR_NOT_FOUND;
}
return ret;
}
ret_code_t fds_reserve(fds_reserve_token_t * const p_tok, uint16_t length_words)
{
ret_code_t ret;
uint16_t page;
if (!m_flags.initialized)
{
return FDS_ERR_NOT_INITIALIZED;
}
if (p_tok == NULL)
{
return FDS_ERR_NULL_ARG;
}
ret = write_space_reserve(length_words, &page);
if (ret == NRF_SUCCESS)
{
p_tok->page = page;
p_tok->length_words = length_words;
}
return ret;
}
ret_code_t fds_reserve_cancel(fds_reserve_token_t * const p_tok)
{
ret_code_t ret;
if (!m_flags.initialized)
{
return FDS_ERR_NOT_INITIALIZED;
}
if (p_tok == NULL)
{
return FDS_ERR_NULL_ARG;
}
if (p_tok->page > FDS_DATA_PAGES)
{
// The page does not exist. This shouldn't happen.
return FDS_ERR_INVALID_ARG;
}
fds_page_t const * const p_page = &m_pages[p_tok->page];
CRITICAL_SECTION_ENTER();
if ((FDS_HEADER_SIZE + p_tok->length_words) <= p_page->words_reserved)
{
// Free reserved space.
write_space_free(p_tok->length_words, p_tok->page);
// Clean the token.
p_tok->page = 0;
p_tok->length_words = 0;
ret = NRF_SUCCESS;
}
else
{
// We are trying to cancel a reservation of more words than how many are
// currently reserved on the page. Clearly, this shouldn't happen.
ret = FDS_ERR_INVALID_ARG;
}
CRITICAL_SECTION_EXIT();
return ret;
}
ret_code_t fds_record_write(fds_record_desc_t * const p_desc,
fds_record_t const * const p_record)
{
return write_enqueue(p_desc, p_record, NULL, FDS_OP_WRITE);
}
ret_code_t fds_record_write_reserved(fds_record_desc_t * const p_desc,
fds_record_t const * const p_record,
fds_reserve_token_t const * const p_tok)
{
// A NULL token is not allowed when writing to a reserved space.
if (p_tok == NULL)
{
return FDS_ERR_NULL_ARG;
}
return write_enqueue(p_desc, p_record, p_tok, FDS_OP_WRITE);
}
ret_code_t fds_record_update(fds_record_desc_t * const p_desc,
fds_record_t const * const p_record)
{
// A NULL descriptor is not allowed when updating a record.
if (p_desc == NULL)
{
return FDS_ERR_NULL_ARG;
}
return write_enqueue(p_desc, p_record, NULL, FDS_OP_UPDATE);
}
ret_code_t fds_record_delete(fds_record_desc_t * const p_desc)
{
fds_op_t * p_op;
nrf_atfifo_item_put_t iput_ctx;
if (!m_flags.initialized)
{
return FDS_ERR_NOT_INITIALIZED;
}
if (p_desc == NULL)
{
return FDS_ERR_NULL_ARG;
}
p_op = queue_buf_get(&iput_ctx);
if (p_op == NULL)
{
return FDS_ERR_NO_SPACE_IN_QUEUES;
}
p_op->op_code = FDS_OP_DEL_RECORD;
p_op->del.step = FDS_OP_DEL_RECORD_FLAG_DIRTY;
p_op->del.record_to_delete = p_desc->record_id;
queue_buf_store(&iput_ctx);
queue_start();
return NRF_SUCCESS;
}
ret_code_t fds_file_delete(uint16_t file_id)
{
fds_op_t * p_op;
nrf_atfifo_item_put_t iput_ctx;
if (!m_flags.initialized)
{
return FDS_ERR_NOT_INITIALIZED;
}
if (file_id == FDS_FILE_ID_INVALID)
{
return FDS_ERR_INVALID_ARG;
}
p_op = queue_buf_get(&iput_ctx);
if (p_op == NULL)
{
return FDS_ERR_NO_SPACE_IN_QUEUES;
}
p_op->op_code = FDS_OP_DEL_FILE;
p_op->del.step = FDS_OP_DEL_FILE_FLAG_DIRTY;
p_op->del.file_id = file_id;
queue_buf_store(&iput_ctx);
queue_start();
return NRF_SUCCESS;
}
ret_code_t fds_gc(void)
{
fds_op_t * p_op;
nrf_atfifo_item_put_t iput_ctx;
if (!m_flags.initialized)
{
return FDS_ERR_NOT_INITIALIZED;
}
p_op = queue_buf_get(&iput_ctx);
if (p_op == NULL)
{
return FDS_ERR_NO_SPACE_IN_QUEUES;
}
p_op->op_code = FDS_OP_GC;
queue_buf_store(&iput_ctx);
if (m_gc.state != GC_BEGIN)
{
// Resume GC by retrying the last step.
m_gc.resume = true;
}
queue_start();
return NRF_SUCCESS;
}
ret_code_t fds_record_iterate(fds_record_desc_t * const p_desc,
fds_find_token_t * const p_token)
{
return record_find(NULL, NULL, p_desc, p_token);
}
ret_code_t fds_record_find(uint16_t file_id,
uint16_t record_key,
fds_record_desc_t * const p_desc,
fds_find_token_t * const p_token)
{
return record_find(&file_id, &record_key, p_desc, p_token);
}
ret_code_t fds_record_find_by_key(uint16_t record_key,
fds_record_desc_t * const p_desc,
fds_find_token_t * const p_token)
{
return record_find(NULL, &record_key, p_desc, p_token);
}
ret_code_t fds_record_find_in_file(uint16_t file_id,
fds_record_desc_t * const p_desc,
fds_find_token_t * const p_token)
{
return record_find(&file_id, NULL, p_desc, p_token);
}
ret_code_t fds_descriptor_from_rec_id(fds_record_desc_t * const p_desc,
uint32_t record_id)
{
if (p_desc == NULL)
{
return FDS_ERR_NULL_ARG;
}
// Zero the descriptor and set the record_id field.
memset(p_desc, 0x00, sizeof(fds_record_desc_t));
p_desc->record_id = record_id;
return NRF_SUCCESS;
}
ret_code_t fds_record_id_from_desc(fds_record_desc_t const * const p_desc,
uint32_t * const p_record_id)
{
if ((p_desc == NULL) || (p_record_id == NULL))
{
return FDS_ERR_NULL_ARG;
}
*p_record_id = p_desc->record_id;
return NRF_SUCCESS;
}
ret_code_t fds_stat(fds_stat_t * const p_stat)
{
uint16_t const words_in_page = FDS_PAGE_SIZE;
// The largest number of free contiguous words on any page.
uint16_t contig_words = 0;
if (!m_flags.initialized)
{
return FDS_ERR_NOT_INITIALIZED;
}
if (p_stat == NULL)
{
return FDS_ERR_NULL_ARG;
}
memset(p_stat, 0x00, sizeof(fds_stat_t));
p_stat->pages_available = FDS_VIRTUAL_PAGES;
for (uint16_t page = 0; page < FDS_DATA_PAGES; page++)
{
uint16_t const words_used = m_pages[page].write_offset + m_pages[page].words_reserved;
if (page_identify(m_pages[page].p_addr) == FDS_PAGE_UNDEFINED)
{
p_stat->pages_available--;
}
p_stat->open_records += m_pages[page].records_open;
p_stat->words_reserved += m_pages[page].words_reserved;
p_stat->words_used += words_used;
contig_words = (words_in_page - words_used);
if (contig_words > p_stat->largest_contig)
{
p_stat->largest_contig = contig_words;
}
records_stat(page,
&p_stat->valid_records,
&p_stat->dirty_records,
&p_stat->freeable_words,
&p_stat->corruption);
}
return NRF_SUCCESS;
}
#endif //NRF_MODULE_ENABLED(FDS)